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Abstract

Over the past few decades, with the increase in microscopic imaging a very rapid

progress has been made in predicting Protein subcellular localization. Knowledge

of Protein subcellular localization is very important in understanding the function

of protein. During the drug discovery, it can significantly improve the target

identification process. Protein subcellular localization is also very important in

disease discovery. It has been prove that abnormal protein subcellular localization

causes diseases and can even involve cancer. Many researcher has come up with

different model to predict Protein Subcellular Localization. With the advancement

in deep learning models different architecture of CNN has been vastly used for

classification of protein. But CNN comes with the computational cost and other

drawbacks. In order to predict protein subcellular localization with high accuracy

this study propose a methodology that uses Otsu’s adaptive thresholding technique

which calculate threshold value for each image by using image histogram. With

this threshold value this methodology generates three binary images and for each

binary image it extracts 9 feature vectors by counting the number of white pixel

in neighboring pixel. In training phase Multi Label Random Forest classifier is

applied on the extracted features to predict Protein subcellular localization. In

order to evaluate this proposed technique this study used recently publish data

HPA (version 18) and outperformed the state-of-the-art technique (macro f1 –score

0.59) by achieving macro f1-score of 0.63. This study also evaluated this technique

against the fixed threshold and achieve macro f1-score of 0.44 which proves that

adaptive threshold achieve more accuracy then fixed threshold technique.
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Chapter 1

Introduction

1.1 Biological Background

With the improvement in microscope, many scientist contributed in cell theory.

The doctrine of cell states that cells are the smallest independent unit of life and

all eukaryotic organisms are made of these cells. Cell theory played a very vital

role in shaping the biological science. [1].

Cell is the basic building block of human body and a fundamental component of

modern definition on life and living things. There are more than 10 trillion cells in

human body that are highly diverse in function and their structures and play a very

vital role in the development of human body. Together they work and perform

function. According to many molecular biology and histology textbooks, in an

adult human body there are around 200 types of cells [2]. Cells can be classified

into different categories based on different factors like shape, size, complexity and

their numbers. Based on the complexity cells are divided into two categories,

Eukaryotic cell and Prokaryotic cell. The main difference between eukaryotic cell

and prokaryotic cell is that all Eukaryotic cells have a membrane –bounded nucleus,

cytoskeleton and a complex endomembrane system whereas Prokaryotic cells lack

a cell nucleus or any membrane-encased organelles [3].

1
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1.1.1 Eukaryotic Cell

Any organism or cell that contains a clear defined nucleus is Eukaryotic cell. The

Eukaryotic cell’s nucleus is surrounded by the nuclear membrane where chromo-

somes (bodies containing the hereditary material) are residing. Eukaryotic cells

also contain organelles, including mitochondria (cellular energy exchangers), a

Golgi apparatus (secretory device), an endoplasmic reticulum (a canal-like system

of membranes within the cell), lysosomes (digestive apparatus within many cell

types) and ribosomes. Figure 1.1 shows the anatomy of and Eukaryotic cell.

Figure 1.1: Anatomy of Eukaryotic cell.
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1.1.2 Organelles and their Functions

As mentioned Eukaryotic cell contains different organelles which has at least one

explicit tasks to act in the cell, similar as an organ does in the body. Table 1.1

shows some functionality of different organelles. For instance the purpose of Nu-

cleus is to controls the cell activities. Mitochondria is considered as the power

house of cell, Lysosome Digests food, bacteria, worn out organelle, Golgi Appara-

tus Sorts and packs protein into vesicle and transports them and Ribosomes are

responsible for making of Proteins.

Table 1.1: Organelles and their Functions.

Name
Prokaryotic
/ Eukary-
otic

Function

Nucleus E, P Controls the cell activities.

Nucleolus E, P Assembly of ribosomes take place here.

Cell Mem-
brane

E, P
• Separates the cell from outside environment
• Controls what goes in and out of cell.

Lysosome E Digests food, bacteria, worn out organelle.

Mitochondria E, P
Power house of cell –produces energy for
growth, development, and movement

Chloroplast E, P
• Captures light & converts it into chemical
energy.
• Pigment chlorophyll (photosynthesis).

Golgi Appa-
ratus

E, P
Sorts & packs protein into vesicle & transports
them.

Cytoplasm E, P
Gel-like substance that keeps organelles in
place.

Vacuole E, P Stores food, water and other material.

Ribosome E, P Makes Proteins

Endoplasmic
Reticulum

E, P
• Connects membrane
• Moves material
• Process protein



Introduction 4

1.1.3 Ribosomes

Ribosomes, in eukaryotes, uses a process called translocation for protein synthesis

by following the order from the nucleus. As shown in figure 1.2 In Translocation

process nucleus has some parts of DNA (genes) that are transcribed to form mR-

NAs, messenger RNAs. These mRNA transfer to the ribosome, where ribosome

uses this information to make a protein which has a specific amino acid sequence.

As protein synthesis is an important function in any cell, therefore ribosomes are

present in every cell type not only in multicellular organisms but also in prokary-

otic cells as well such as bacteria. However the ribosome in eukaryotic cell is in

large number than in prokaryotic cell.

Figure 1.2: Translocation Process

1.1.4 Proteins

As mentioned above proteins are macromolecules (large size molecules) having

structural unit called amino acid. There are total of 20 different amino acid
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that exist in protein and thousands of these amino acid attach together to form

a sequence of long chains to form protein. In Eukaryotic cells ribosomes can

synthesize many different sequence of amino acid proteins which then travel to their

destination and according to the defined destination they perform their functions.

In order to perform its function, it is very important to transport a protein to

its designated organelle or subcellular location. This process of transferring a

newly synthesized protein to its destination is known as Protein Sorting or Protein

targeting [4]

1.2 Method of Predicting Protein Subcellular Lo-

calization

Method of predicting protein subcellular localization can be classified into two

categories, through 1D amino acid sequencing and 2D-bio image based.

1.2.1 1D- Amino Acid Sequencing

In the early years many work has been done for this particular problem using 

amino acid sequence.Tthis is the process to identify the arrangements of amino 

acid in protein. Generally this can be done by two ways, one is similarity based 

classification and other is to find target signals that are buried into the sequence. 

But the main problem with the amino acid sequence is that they cannot detect 

protein miss translocation which can be a cause for cancer and plays very im-

portant role in cancer biomarker screening. [2]. Other drawbacks of amino acid 

sequence is that they are not very intuitive as they are text based and they carry 

less information as compare to the 2D protein image, as images are very intuitive, 

unambiguous, more concise, interpretable and carry more morphological details 

about protein subcellular location, they help in clear visualization of the size and 

shape the protein which can be very helpful as different proteins have different 

size and shapes [5].
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1.2.2 Image Based Prediction

Images are very important for human experts as they can easily extract useful 

information when distinguishing protein subcellular locations manually. Inspired 

by this many automated algorithm predicts protein subcellular locations with the 

help of different distribution patterns which can be very useful in detection of 

translocation of cancer tissues. Due to the above mentioned advantages image 

based classification are becoming very popular among researchers.

In the recent years with the advancements in microscopy images, a large amount 

of images have been produced every day making it impossible for human expert to 

analyze each image. Day by day large dataset of images has been produce. Due 

to this reason researchers are finding an optimized automated method to classify 

large image set within less time. Machine Learning is becoming very popular for 

this problem among researchers. Given image dataset, features are extracted that 

helps in classify protein subcellular localization and different classifiers are imple-

mented to achieve the highest accuracy. In the past years Machine Learning is 

used vastly in classification problems. Researchers are also using machine learning 

for this particular problem using different dataset, feature extraction methods and 

different classifiers. . Deep learning is also being used recently for this purpose 

especially when dataset is in image form and they are achieving good accuracy. 

Deep learning algorithms are capable of extracting images by themselves Different 

authors proposed different architecture and pre-trained model with some modifi-

cation in order to achieve efficient accuracy.

1.3 Description of Subcellular Localization Dis-

tribution

In order to predict protein subcellular localization,one of the challanges is to ex-

tract useful features among many potential features [6]. It is essential to extract
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features that can view the texture pattern in image clearly. Below is the sum-

mary of different Global and Local feature extraction methods used by different

researchers in order to predict Protein subcellular Localization.

1.3.1 Global Features

Below are some used global features descriptors used in protein subcellular local-

ization.

1.3.1.1 Haralick Feature

In pattern recognition systems, Haralick feature is the renowned image descriptor.

Along with the entropy, correlation and contrast the Haralick feature uses 13

different statistics, calculated by using image’s grey-level co-occurrence matrix. In

order to understand protein pattern Haralick features are made rotation invariant

by taking averaged overall directions of co-occurrence. [7].

1.3.1.2 Zernike Feature

Zernike features are also well known feature descriptor when it comes to protein

prediction. It performs much more effective when combined with different fea-

tures descriptors like Haralick. In two polar variables Zernike calculates the image

decomposition onto an orthogonal set of polynomials. [8].

1.3.1.3 Threshold Adjacency Statistics (TAS)

Studies has shown that only using Threshold Adjacency Statistics TAS, recogni-

tion system shows a good performance which indicates that it is a good feature 

descriptor in bio-images. TAS sets a fixed threshold value and using that value 

it extracts the features which perform very well in predicting protein subcellular 

localization. [9].
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1.3.1.4 Histogram of Oriented Gradient (HOG)

For protein subcellular localization Histogram of Oriented Gradient HOG descrip-

tor construct a feature vector by combining the values obtained by counting all

the edge orientation of each cell in histogram. In case of object variation such as

rotation, scale and translation, Histogram of Oriented Gradient HOG descriptor

is very efficient. [10].

1.3.1.5 Texton Based Statistical Feature

Texton Based features as the name implies detect the textural information. A

mask which has the ability to detect the textural information is skimmed over

the entire image to produce texton image which then further computed to extract

statistical features of this texton image which include energy contrast, homogeneity

and entropy [11].

1.3.2 Local Features

1.3.2.1 Scale-Invariant Feature Transform

These features are obtained by detecting salient points and describing local fea-

tures around these salient points in an image. It performs best on fluorescence

object because of they are invariant to orientation and scaling and partly invariant

to illumination changes. [12].

1.3.2.2 Speed-up Robust Feature (SURF)

SURF is composed of two-pass algorithm. In the first pass using an approximate

Gaussian blob detector, it detects the interest points and in the second pass of

the algorithm it calculates 64 statistical features at each interest point. As SURF

is inspired by SWIFT it has been used in predicting protein subcellular localiza-

tion. [13].
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1.3.2.3 Subcellular Object Feature:

These features are obtained by number of pixels, fraction of overlapping pixels

with the DNA and the object skeletons length in fluorescence object as they are

developed to describe the pattern of fluorescence object. [14].

Figure 1.3: Process for predicting protein subcellular localization
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1.4 Application of Protein subcellular localiza-

tion

In molecular cell biology, proteomics and system biology, protein subcellular lo-

calization is very important. Studies shows that subcellular locations plays an

important role in defining protein function. To work properly, protein has to be

located in its proper place after being synthesized in the ribosome Therefore, it is

very important to find the subcellular localization of a protein to understand its

working. It has been prove that abnormal location of protein in subcellular com-

partment causes potential human diseases and even involve in cancer [15]. Protein

subcellular localization can be used to make 3D model of a cell organelle that can

be very helpful in medical studies and diagnosis [2].

With recent breakthrough in bioinformatics, bio images has been used to solve

many complicated biological research problems, protein subcellular localization

being one of the example. With the advancement in sequencing and imaging

technologies, many methods has been proposed to predict accurate subcellular lo-

calization during the last decade and up till now it is one of the important task in

bioinformatics and researchers are contributing in solving this problem . [3] [5]

1.5 Problem statement

To perform its function protein has to be located to its pre-determined position 

hence it is very important to find the subcellular localization of protein. Pro-

tein miss location has proven to be the cause of several human diseases, such as 

Alzhrmeir’s disease and cancer [16]. Therefore, it is very important to find the 

subcellular localization of a protein to understand it’s working. As discussed in 

literature review there are some drawbacks and limitations but the major problem 

that we identified in [3] and many other method was the use of fixed threshold. As, 

in large image dataset, intensities distribution are different from image to image. 

For instance there can be images where proteins are stained with high intensities
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but there can be some images where DNA channels or other cell organelles are

stained with even higher intensities, therefore it is not suitable to have fixed thresh-

old to extract protein features as it can easily confused with different component

present in an image.

1.6 Purpose

The purpose of this research is to build a model that can extract features based

on adaptive Threshold Adjacency statistics (TAS). Our main goal is to implement

such model that can produce threshold values for each image according to their own

intensity distribution and with that threshold extract features. For this purpose

we will use Otsu’s Adaptive thresholding, using this our model will be able to

learn features that contain more information and represent proteins in a clear way

and help in classifying protein subcellular localization.

1.7 Significance of the Solution

The solution that is proposed in this research is to have adaptive threshold in

which threshold value is obtained by analyzing each image with the help of his-

togram so that every image has its own threshold value according to its intensity

distribution. With this, we will be able to achieve binary images that will give

maximum information regarding proteins. After that we will extract features and

apply classifiers.

As our research is to make a model in such a fashion that it uses adaptive thresh-

olding technique, by doing this we will be able to extract more information of

protein location from images resulting in achieving high accuracies in classifying

protein subcellular localization.



Chapter 2

Literature Review

For the past decade, with the advancement in the microscopic images, several

techniques were proposed and discussed by the researchers for the prediction of

protein subcellular localization based on images each discussing different problems

in the literature review given below.

Wei et al [17], focused on the problem that all machine learning hand-crafted

feature descriptors for protein images extract unsupervised features which do not

take into the account of information of class thus resulting into non distinguish-

ing features for the classification task. The other problem that they discussed

that these descriptors learn very shallow representation of the protein images and

these shallow based feature extraction methods may not be sufficient. With the

advancement in machine learning, Deep learning models are capable of learning

high level features to best represent the biological images. Wei et al proposed

CNN model for generating the representation of protein images. They used the

Human Protein Atlas (HPA) Dataset (version 13) which contains 24,028 antibod-

ies that are related to 46 different normal human tissues. They used 7-layer CNN

Alex-Net that was pertained on ImageNet and used partial parameter transfer

strategy in which they used first 4 conv-layers parameters trained on ImageNet

and used updated parameters using protein images for layers above conv-4. They

used the Lasso model for features selection and used DECOC for solving multi-

class classification problem. They did different experiments to get the best result

12
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and succeed in outperforming previous hand-crafted feature extraction methods.

Using CNN model they achieve the classification accuracy of 0.579 on HPA human

tissues dataset. Even though, their model outperforms the other methods, there

are some drawbacks. For instance, their model classified only 20% of the human

proteins that are localized in two or more than two cellular compartment, also,

cellular compartments with less protein images have lower accuracies.

Jin et al [18] inspired by the performance of deep learning in image classification, 

proposed a method to classify protein subcellular localization using CNN. They 

also used dataset by Human protein Atlas (HPA) containing 563 images of 188 

protein in healthy liver tissues. Before applying CNN model they preprocessed 

the dataset. As the original image is 3000X3000 it was improper to take the whole 

image as input in CNN model so they divided each image into 100 small patches 

with the hypothesis that small image patches with high protein expression in each 

image can represent the subcellular localization pattern of the whole image. They 

also rebalance the dataset by randomly selected image patches from the images 

that have less examples in the dataset and processed them through rotation and 

flipping the images to make the number of classes equal. The final training dataset 

consisted of 86400 patches. The Dataset was divided into training, testing and 

validation dataset by ratio 4:1:1 and there was no overlapping of protein among 

these three dataset. After preprocessing they applied the CNN model inspired by 

the existing CNN model named DeepYeast which have 11- layers as mentioned 

above. ReLU activation function was used as it performed better than other 

activation functions. Xavier initialization scheme was used for the weights of 

intermediate layers. Stochastic gradient descent (SGD) was used as the optimizer. 

To compare their model performance they implemented SVM model as SVM has 

been shown as the most effective model in terms of subcellular localization of 

protein [3]. For SVM model they extracted 57 features including Harallick texture 

features and overlapping features. After comparing both CNN and SVM model, 

the result was in the favor of CNN. Deep neural network achieved 47.31% accuracy 

while the SVM only managed to achieve 39.78% of accuracy. Although deep neural 

network outperformed the SVM but it took 17 hours to train the model, also the
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results shows that the rebalance performs an important role in increasing the

accuracy but producing image patches from 3000x3000 images may cause loss of

information.

Tanel et al [19] also used deep neural network for its capability of overcoming

the feature selection problem. They trained a CNN model named Deep Yeast to

classify fluorescent protein subcellular localization in yeast cells. They constructed

labeled dataset based on high-throughput proteome-scale microscopy images from

Chang et al. the dataset consist of 7132 images of 12 classes. DeepYeast archi-

tecture consisted of 11 layers where 8 of them were convolutional layers and 3

were fully connected. They used Glorot-normal initialization technique for weight

initialization and used batch normalization. Stochastic gradient descent (SGD)

was use for optimization. To compare their model they also trained random forest

using features that was extracted through Cell Profiler. After several experiments

results showed that the DeepYeast achieved the highest accuracy of 91% greater

than random forest that only achieved 79%. The major drawback of this model is

that it took 3 days to train this model.

Tahir et al. [20] proposed a hybrid model for protein subcellular localization of

fluorescence microscopy images. The author addressed the problem that analysis

of these images for classification is prone to human errors. They introduced thresh-

old technique in which they used fixed interval threshold values (40, 60, 80) and

based on these threshold and mean of intensity of image pixels they extracted 7

binarized images and seven features vectors.They extended their research in which

they ectracted three binarized images [21]. All those seven features vectors they

then applied SVM for classification using one vs all technique. At the end they

predicted the final result using ensemble voting technique. The dataset that they

used was LOCATE Endogenous and through this technique they achieved 99.2%

accuracy. The problem with this technique was that they used fixed threshold

that may work for some images but as they mentioned there are some images in

which their technique was not able to identify

Mengli et al. [6] implemented various models of machine learning including dif-

ferent architecture of CNN and compared their performance in image analysis for
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protein subcellular localization. They first used the VGG-type, 11 layer visual ge-

ometry group CNN as their baseline model that was trained on Dataset of natural

objects, aircraft and so forth. Their model specification was followed by Deep-

Yeast model [16]. In their model every layer was followed by batch normalization

and they used softmax function to generate estimated probability. For optimiza-

tion, stochastic gradient descent was used with momentum 0.9. The model was

trained for 195,000 iterations. They used another architecture, ResNet to reduce

the number of parameters and compared it with the VGG-type CNN. In this model

they used 18 layered and 50 layered model with Adam optimizer. They also dis-

cussed various CNN models and their performances. After implementing CNN

they tested traditional Machine Learning methods. To compare with CNN, they

implemented two tree ensemble methods, Random Forest and gradient boosting.

Further they also implemented linear discriminant analysis, K-nearest neighbor,

and linear SVM and lasso logistic regression. They chose VGG-19 as the feature

extractor. They used dataset constructed by Tanel et al. [19] which consist of

65,000 training, 12,500 validation and 12,500 test single-cell microscopy images.

The comparison of these techniques are given in table 2.1. Result shows that the

accuracy of Res50 was highest (88.6%) but with the cost of 12.75hrs of training.

On the other hand, 11-layer VGG-type model took almost half of the time that is

6hrs and predict with the accuracy of 87.4 % which is ony 1.2% lower. Therefore,

CNN out performed all the other models.

Wei et al. [22] observed that all existing model were constructed on the inde-

pendent parallel hypothesis, where he cellular compartment classes are positioned 

independently in a multi-class classification engine. The important structural in-

formation of cellular compartments is missed. They tried to solve this problem by 

proposing a cell structure-driven classifier construction approach by including the 

prior biological structural information in the learning model. The Dataset that 

they have used was generated by collecting 1636 IHC images with high valida-

tion from HPA. It consist of 21 proteins related to 46 normal human tissues. For 

protein images they extracted features using Haralick features with 10 different
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Table 2.1: Comparision of prediction accuracy on test dataset among different
methods [6].

Network Training Time Test Accuracy

11-layer VGG-type CNN model(Deep
yeast model)

6hr 0.851

11-layer VGG-type CNN model with
data augmentation(Deep yeast model)

6hr 0.874

Res-18 2.45hr 0.853

Res-50 12.75hr 0.886

Random Forest (Direct feature vector-
ization, 1,000 trees)

2hr 0.596

XGBoost (direct feature vectorization,
1000 trees)

10hr 0.679

Linear discrimination analysis 16min 0.289

K-nearest neighbor (K=50 selected) 18hr 0.478

Support vector machine (c = 8 selected) 18.3hr 0.228

Lasso logistic regression ( λ = 0.000796
selected)

13hr 0.441

vanishing moments. They also applied DNA features and for local features they 

used LBP. Stepwise discriminant analysis method was used for feature selection. 

After extracting and selecting features, they used ECOC (Error correcting out-

put coding) method to transform multiclass classification problem into a series 

of binary classification sub-problem according to a pre-defined codeword matrix. 

They constructed 10 different SC-PSorter models based on different sets of features 

extracted from 10 vanishing moments, and for each SC-PSorter, 14 multi-kernal 

based SVM classifiers were constructed. For final result they used result by com-

bining 10 SC-PSorter- based classifiers via majority voting. This method achieved 

0.89 accuracy and compared it with two methods proposed by other authors and 

proved that their model outperformed other two. Although it performed effec-

tively in case of each protein corresponding to only one location. However, a new 

method to perform multi-label based classification problem is still an open issue.
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Non image data, for instance amino acid sequence, can also be added to improve

accuracy as it provides more information.

Ying et al. [7] proposed a method for solving multi-label classification of protein 

subcellular location. Author discussed that in most of the methods the prediction 

accuracy is limited by the simple linear model which lead to incorrect targets. 

Instead of linear statistics they proposed more flexible approach, named iLocator 

which can handle multi-label and single-label samples simultaneously. The dataset 

that they used was high quality images from HPA and UniPort. The normal im-

age dataset contained 3240 images from 28 proteins in normal cells of which seven 

proteins with two or more organelle. The subcellular locations of cancer images 

are not annotated in HPA, so the cancer image dataset was to be predicted and 

compared with the data from normal cells to detect mislocalizations. This dataset 

contained 3696 cancer images of the same 28 proteins as in the normal dataset. 

Seven cancers were considered in this study. The original HPA image is the fusion 

of DNA (purple sections) and protein (brown sections so they tested two separa-

tion techniques, i.e., linear spectral separation (LIN) and blind spectral separation 

by non-negative matrix factorization (NMF). The experimental results show that 

LIN approach outperforms NMF by 5–10% on the testing dataset so they used 

LIN in further experiments. For feature extraction they used Haralick features 

(with 10 vanishing moments), DNA features and LBP features and used stepwise 

discriminant analysis for feature selection. For classification they trained SVM 

model using BR or CC modes. Each classifier based on BR or CC could output 

a seven-dimensional (7D) score vector per testing image, where score represents 

the confidence of belonging to the corresponding class. They used two criteria, i.e. 

top criterion and threshold criterion. Then they took the average of these output 

vector to get final result. The accuracy that they achieved with this model was 

92.71%. Although is was a good classifier but in total there were 20 classifiers 

to be trained on each vanishing moment with both BR and CC modes resulting 

in high computational expense. Ying et al. [23] observed the problem with the 

BR framework that it separates a multi-label problem into n binary classifiers 

ignoring the relationship among labels. To solve this problem author proposed
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a solution to incorporate organelle correlation in classification underline model.

For dataset they used two types of protein images, IHC and IF. Each type of

images has three datasets. The ADN set contains IHC images with high-level ex-

pression o IF images with reliable annotation samples in ADN set are regarded as

labeled data in semi-supervised learning. Then those protein images with medium-

level expression or uncertain annotation are collected in BDN dataset, and they

are taken as the candidate selective unlabeled data in semi-supervised learning.

IDN is independent dataset that is used for testing. They employed five differ-

ent semi-supervised learning methods. They implemented AsemiB, logistic label

propagation (LLP), low density separation, cost-sensitive semi-supervised support

vector machine and transductive multi-label classification. The comparison of

these showed that AsemiB method outperformed other tested methods. For in-

corporating organelle correlation, three step method was follow. First correlation

graph was constructed. Bayesian DAG was used to learn the network structure.

In second step, BR predictor containing N independent SVM classifiers was built

based on original features. In third stage N new binary SVM classifiers were

trained, and the feature space of each binary classifiers and the order of training

these classifier are determined by the correlation graph. Training chain classifier

according to this order can ensure that the additional features are updated out-

puts, which are more accurate than rough labels. With this the accuracy achieved

was 56% which is 0.75-6.25% higher than the single classifier.

Figure 2.1: Flowchart of the procedure of iLocator creation with normal image 
dataset
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Figure 2.2: Flowchart of process of biomarker protein detection using iLoca-
tor.

Wei et al. [24] proposed a method to solve the problem while selecting features 

through SDA stepwise discriminant analysis that this method neglects to take 

the correlation among different compartments into consideration. For this they 

proposed organelle guided multi-label feature selection method CSF by employing 

the biological structural correlation among different cellular compartments. Two 

regularization items were included in the objective function. The first item was 

the group-sparsity regulaizer, which ensured only a small subset of common fea-

tures was selected across different subcellular compartments. The second item is a 

cellular correlation regularized Laplacian term, which utilizes the prior biological
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structural information to capture the intrinsic relatedness across different cellular

compartment. The dataset that they used was Protein Atlas dataset which con-

tains a large number of immunohistochemistry (IHC) images of proteins. They

used version 13 which contains 24028 antibodies, which are related to 46 different

normal human tissues. First they separated DNA channel from the protein using

non-negative matrix factorization then they extracted features using Haralick and

LBP from protein channel and DNA features from DNA channels. For feature

selection they used their proposed method, CSF, by utilizing the prior biologi-

cal structural information. For prediction they used based multi-label learning

mode. After certain experiments they came to the conclusion that their proposed

methodology outperformed the other with which they compared. On benchmark

dataset they achieved 93% accuracy.

Wei et al. [5] in 2019, Human Protein Atlas organization collaborated with kaggle

and held a competition to identify the deep learning solutions which perform the

best in classifying protein subcellular localization patterns [5]. Over 3 months,

many teams participated using vast variety of different networks and pre-trained

models. For this competition they prepared a dataset HPA(version 18) of confocal

microscopic images of protein in different cells. Each image in the dataset consisted

of 4 channels making the protein of interest. Green channel indicates the protein

of interest, yellow channel contains ER, Red channels indicates the microtubule

and Blue channels indicate nucleus. The dataset is highly imbalanced multilabel

dataset. Because of imbalance dataset the measure of evaluation used is macro-f1

score. The team that ranked first in this competition achieved macro f-score of

0.593 and they used neural network with loss function Lovasz loss.

Nicholas et al. [25] proposed a methodology that can overcome the high computa-

tional cost exclude cropping of image. In the proposed technology TAS- Threshold

Adjacency statistics they used a threshold value the mean of the image and bi-

narize the image using this threshold after binarization they extracted feature by

TAS by using the binarize image. TAS extract 9 features, 1st feature is the sum

of all white pixel whose neighboring pixels are not white. The second feature is

the sum of all white pixels whose neighboring pixels has only one white pixel.
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Table 2.2: Models and their performance for top ranking teams [5].

Rank Team Name Member(s) Score

1 Team 1: bestfitting D.Shubin 0.593

2 Team 2: WAIR J.Lan 0.571

3 Team 3: pudae P.Jinmo 0.570

4
Team 4: Wienerschnitzelgemein-
schaft

S.Mahmood
Galib et al.

0.567

5 Team 5: vpp Y.Gu, C.Li 0.566

8 Team 8: One more layer
D.Buslov et
al.

0.563

10 Team 10: conv is all u need X.Cao et al. 0.557

16 Team 16: NTU MiRA K.-L. Tseng 0.553

39 Team 39: Random Walk Z. Gao et al. 0.540

Table 2.3: comparison of accuracies of different feature extraction methods
on Endogenous and Transfected dataset [25]

Feature Extrac-
tion methods

Accuracy on
Endogenous
Dataset

Accuracy on
Transfected
Dataset

TAS 94.4% 90.3%

Haralick 94.2% 86.0%

Zernike 75.8% 68.6%

TAS+Haralick 98.2% 93.2%

Similarly the third feature is the sum of all pixels whose neighboring pixel has two 

white pixels. In the same manner the 9th feature is the sum of all white pixels 

whose neighboring pixels are all white. All these 9 features are normalized. After 

feature Extraction they used SVM .The dataset they used are endogenous and 

transfected and they achieved accuracies 94.4% and 86.6%. They also tested with 

TAS+Haralick features and achieved 98.2% and 93.2% accuracy.
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Table 2.4: Critical analysis of Literature Review

Research
pa-
per

Dataset Methodology Results

[24]
1- Human Protein Atlas (HPA
version13) 2- Dataset containing
1040 IHC images

CSF feature
selection
model.

Accuracy
93%

[20]
1-LOCATE-Transfected 553 im-
ages 2-Endogenous Dataset 502
images

modified
TAS

Accuracy
99.2%

[17]

Human Protein Dataset (HPA
version 13) containing 24,028 Re-
lated to 46 different human tis-
sues

7-layer CNN
Alex-Net
that is pre-
trained on
ImageNet

Accuracy
57.9%

[18]

Human Protein Atlas (HPA)
containing 563 images related to
188 protein in healthy liver tis-
sues.

11-layerd
CNN model

Accuracy
47.31%

[19]

Constructed dataset based on
high-throughput proteome-scale
microscopy images consisted of
7132 images and 12 classes

Deep Yeast
11 layers
in which
8 are con-
volutional
layers and
3 are fully
connected.

Accuracy
91%

[6]
Dataset consisted constructed by
Tanel et al [19]

VGG-type
CNN 11
layer visual
geometry
group

Accuracy
87.4%

[7]

1-Human Protein Atlas (HPA)
2- UniPort Dataset consisted of
3696 cancer images

1-Haralick
Features
2-DNA Fea-
tures 3-LBP
features

Accuracy
89.4%

[23]

ADN Dataset contains IHC im-
ages IDN Independent Dataset
for testing

LLP Cost-
sensitive
semi su-

pervised

support vec-

tor machine

Accuracy
56%
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Table 2.4 shows the critical analysis of different approaches used in order to pre-

dict protein subcellular localization. Different model performed well on different

datasets. Along with others modified TAS performed very well with the achieved

accuracy of 99.2%.



Chapter 3

Methodology

As discussed earlier with the advancement in microscopic images of proteins, re-

searchers have come up with multiple techniques to predict the protein subcellular 

localization. These techniques mainly comprised of Machine Learning models to 

classify protein subcellular localization. Various Algorithms has been designed 

which include feature extraction methods such as Heralick Features [7] TAS and 

ETAS techniques [9] along with different classifiers such as svm, pretrained mod-

els etc. With the advancement in Machine Learning over the past few years Deep 

neural networks are widely used in image classification [26] [27]. Most of these 

techniques also include different model of convolutional neural network. Convolu-

tional Neural Networks (CNN) is consider as the very powerful image classifica-

tion models. CNN-based models are capable of achieving state-of-the-art results 

in classification, localization, semantic segmentation and action recognition tasks, 

amongst others [28]. Nonetheless, they have their limits and they have fundamen-

tal drawbacks. A Convolutional neural network can be slow depending on various 

operations such as maxpool. In order to perform well for CNN with several layers 

requires a good GPU because of the computational constraint otherwise the train-

ing process can take a lot of time. Along with the good computational power, large 

amount of Dataset is require to train the neural network. Due to these limitations 

and drawback we proposed the algorithm which extract features by consuming less 

computational power, less time and is capable of producing state-of-the-art result

24
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in predicting Protein Subcellular localization. Our proposed methodology uses

adaptive threshold to obtain 27 statistical feature vector of an image and apply

classifier to classify protein subcellular localization.

This approach consists of three phases:

1. Feature Extraction phase.

2. Training phase.

3. Evaluation phase.

Figure 3.1: Proposed Methodology
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In feature extraction phase features vector are extracted using adaptive threshold

and train these feature vectors using classification model. In the evaluation phase

this study test the model on test dataset and evaluate the performance of this

proposed approach and compare the result with different approaches.

Figure 3.2: Flowchart of Proposed Methodology
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3.1 Dataset

In 2019, Human Protein Atlas organization collaborated with kaggle and held a

competition to identify the deep learning solutions which perform the best in clas-

sifying protein subcellular localization patterns [5]. Over 3 months, many teams

participated using vast variety of different networks and pre-trained models. For

this competition they prepared a dataset HPA(version 18) of confocal microscopic

images of protein in different cells. Each image in the dataset consisted of 4

channels making the protein of interest.

1. Green channel indicates the protein of interest.

2. Yellow channel contains ER.

3. Red channels indicates the microtubule.

4. Blue channels indicate nucleus.

Figure 3.3: 4 Different Channels
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These channels can be very helpful in classifying protein localization in cell images

but green channel is the one which has protein that we need to classify. Since

protein of interest resides in the green channel, this study used all images of green

channel and applied the proposed technique and successfully outperformed state-

of-the-art technique.

3.1.1 Challenges

Challenges included in this dataset are follows:

1. First challenge is to train model on high imbalanced classes. There are 28

different protein that we need to predict in 27 different cell types. The most

common label in the dataset was ‘nucleoplasm’ having 12,885 images and

the rarest label was ’rods and rings’ with only 11 images in dataset.

2. Second challenge is predicting multi labels per images. There are some im-

ages that belongs to more than 1 label.

3.2 Feature Extraction

The second phase of proposed methodology is to extract features from the images

in the dataset. For this purpose this study used modified technique that is used

in ETAS-Subloc [20].

3.2.1 ETAS-SubLoc

In the ETAS-SubLoc [20] researchers extracted global features using modified

Threshold Adjacency Statistics. Tahir et al [20] proposed this technique to increase

the efficiency and enhance the discrimination power. In the modified Threshold

Adjacency seven threshold ranges are obtained by using a fixed threshold value 30.

With these seven threshold ranges, seven binary images are obtained. With every
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binary image nine feature vectors are obtained and then these feature vectors are

used to train seven SVM’s. Majority voting Scheme is used for the final prediction

(figure 3.3). In this research methodology, modified technique EATAS-SubLoc

is used. Compare to ETAS-SubLoc [20] this methodology use 3 distinct feature

spaces for each image and instead of using fixed threshold it use adaptive Otsu

based thresholding.

Figure 3.4: Working of ETAS-SubLoc [20]
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3.2.2 Adaptive-TAS-SubLoc

Adaptive Threshold Adjacency Statistics are produced by first applying Otsu

adaptive threshold by calculating the threshold value using image histogram so

that we don’t miss on the intensities in the foreground. With this threshold value

and the average intensity of the pixels value we generate binary images and then

extract features out of these binary images. For this research methodology we

used random forest classifier for these feature vectors to train on it.

3.2.2.1 Otsu’s Adaptive Thresholding

In order to predict protein subcellular localization, segmentation of an image is

very important so that we can identify foreground information with the back-

ground information.

In protein images, fixed threshold will not give you good results because in some

images the pixels value are so close to the background value that it completely

disappear or in some cases it cannot differentiate between background and fore-

ground. In this scenario we lose very valuable information which is required in

protein subcellular localization. To overcome this problem, this study used Otsus’s

thresholding technique which generate threshold value by computing histogram of

an image. Histogram is created by using the 8-bit grayscale [0-255] values of an

image. It calculates the number of occurrences of each pixel value in an image.

Otsu threshold use the histogram of an image to find the threshold value that is

optimal value to separates the foreground from background.

Otsu Algorithm first establish the histogram H of an image and iterate through

each threshold value t [0-255] to separate the pixels into two classes, C1 and C2;

foreground and background. [29]. The formula of variance where µ is the mean,

N is the total number of pixels and Pi is the value of ith pixel.

σ =
N∑
i=0

(Pi − µ)/N (3.1)
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In order to find the with-in class variance at any threshold t is given by

σ2(t) = Wbg(t)σ
2
bg(t) +Wfg(t)σ

2
fg(t) (3.2)

Where Wbg (t) and Wfg (t) is the probability of pixels for each class at threshold

t which is given by.

Wbg(t) = Pbg(t)/Pall (3.3)

Wfg(t) = Pfg(t)/Pall (3.4)

Where Pbg (t) and Pfg (t) are the total count of pixels in background and fore-

ground classes respectively at threshold t.

Algorithm : Otsu’s Adaptive Thresholding

Input: Img (Image)

1: Hist ← calculateHistogram(Img)

2 : maxintensity ← getMaxIntensityOfImage(Hist)

3 : Fn min← infinity

4 : iinrange(1,maxintensity)do :

5 : C1← calculateBelowThresholdP ixels(Img, i)

6 : C2← calculateAboveThresholdP ixels(Img, i)

7 : P1, P2← calculateProbabilities(C1, C2)

8 : W1,W2← calculateweights(C1, C2, i)

9 : M1,M2← calculateMean(P1, P2,W1,W2)

10V 1, V 2← calculateV ariance(P1, P2,W1,W2,M1,M2)

11fn← V 1 ∗ C1 + V 2 ∗ C2

12iffn¡fnminthen :

13fn min← fn
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14thresholdvalue← i

15endif

16endfor

3.2.2.2 Image Binarization

After obtaining the threshold value, EATAS-SubLoc generates three binarize im-

ages of an input image using three different ranges. These binarize images have the

intensities in the range µ to255, µ-t to 255 and µ-t to µ+t as shown in equations

below. Here t is the threshold value that is obtained through Otsu’s algorithm

and it is the optimal value that performs efficient segmentation.

E1 = µto255 (3.5)

E2 = µ− τto255 (3.6)

E3 = µ− τtoµ+ τ (3.7)

3.2.2.3 Feature Vectors

The optimal value of threshold is obtained and using that value images are bina-

rized. After binarization, each binarize image produces 9 statistical feature vector

to exploit the dissimilarity seen in the threshold images. These nine statistical

are obtained by counting the number of the adjacent white pixel for each white

pixel.[fig]. Thus the first statistic is the total number of white pixel with no adja-

cent white pixel; the second statistic is the total number of white pixel with only

one white pixel in neighbor. By finding all the count of the neighboring white pixel

up to the maximum of eight, we will get our 9 statistic feature vector. Then these
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Figure 3.5: Feature Extraction from binarize image

nine statistics are normalized by dividing every feature with the total number of

white pixel in binarize image.

3.3 Training Phase

After feature extraction the next phase is to build a classifier on these feature

vectors. As discussed previously, dataset used in this study is imbalance and

multilabel. To overcome this problem of imbalance multilable classification this
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research methodology use Multi-label Smote to tackle the imbalance of the dataset.

For classification of feature vectors this study use Random Forest Classifier.

3.3.1 MlSmote

In some classification problem the number of instances which belong to one class

is very low as compare with the other class instances which generates a problem

of data imbalance and it highly effects the performance of our machine learning

algorithms. Similar problem also occur in the case of multi-label classes where

the class distribution is uneven. To solve this imbalance dataset problem, a very

effective approach of data augmentation for imbalance multi-label data is used

which is MLSMOTE-multi-label synthetic minority over-sampling.

MLSMOTE is every effective and most popular data augmentation technique that

is used for imbalance multi label classification. MLSMOTE is the extension of

the technique SMOTE – Synthetic Minority over Sampling Technique. SMOTE

worked on the following principle.

1. select the minority class label.

2. Select an instance of the data belonging to that class.

3. Finding the K-nearest neighbor of the selected instance.

4. Select a random data point from the K-nearest neighbor of the selected

instance.

5. Take data intense anywhere on the line that joins the random data point

and selected instance.

6. Repeat these steps until the data is balanced.

In SMOTE we deal with samples of the same class but in multi-label classification

we have multiple classes and SMOTE fail in this setting as there are more then one

class associated with every instance of the dataset. In multi-label classification we
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have the possibility that the instance of the data belongs to majority label and

also have another label that belong to minority. The majority labels are called the

head labels and the minority as the tail label in Multi-label setting.

Steps include in MLSMOTE is to first select data to augment with proper criteria

as to which labels are considered as minority. Once the data is selected for the

minority or tail label instances. We generate new instances according to selected

instances.

In order to generate synthetic instances we need to choose instance from the

dataset from which data is to be created. For this purpose we need select tail

labels so that we can generate instances belonging to the tail labels. In order to

select tail labels Imbalance ratio per label (IRPL) is calculated individually for

each label along with Mean Imbalance ratio (MIR) which is defined as the average

of IRPL of all the labels.

Every label whose IRPL(l) > MIR is considered as a tail label and all the instance

of the data which contain that label is considered as minority instance data.

It then generates the sysnthetic instances based on the selected tail label and ran-

dom selected KNN data point and clones the label of the selected instance and

assign it to newly generated instances. [30]

Algorithm

Inputs:

D (Dataset) K (Number of nearest neighbors)

1: L ← DatasetLabels(D)

2 : MIR ← calculateMeanImbalanceRatio(D, L)

3 : foreachlabelinLdo

4 : LIR ← calculateMeanImbalanceRatioP erLabel(D, label) 

5 : ifLIR¿MIRthen

6 : MinoritylabelsinstancesBag

7 : minorityBag ← getAllInstencesOfLabel(label)

8 : foreachinstanceinminorityBagdo :
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9 : distances← calculateDistance(instance,minorityBag)

10 : AsscendingSort(distances)

11 : SelectionofNeighborset

12 : neighbors← getHeaditems(distances, k)

13 : RNeigh← getRandomNeighbor(neighbors)

14 : FeaturesandLabelssetgeneration

15 : syntheticInstance← newInstance(instance, RNeigh, neighbors)

17 : D = D + syntheticInstance

18 : endfor

19 : endif

20 : endfor

3.3.2 Multilabel Random Forest Classifier

After feature Extraction Phase, next step is to train a classifier on the extracted

feature vectors. For this purpose this study use Multilable Random Forset classi-

fier. Random forest is a supervised learning algorithm that can be used for both

regression and classification but mainly it is used for classification. Random For-

est generate decision trees on data instances and get the prediction from each tree

and based on voting scheme select the best solution. Rndom forest has almost

the same hyperparameters as a decision tree but Random forest is an ensamble

method which makes it better than the single decision tree because by averaging

the result, random forest reduces the over-fitting. While growing the trees, Ran-

dom Forest searches for the best feature among the set of features which result in

better model. In Random Forest algorithm it is very convenient to measure the

relative importance of each feature on the prediction .

Below are the steps for working of Random Forest Algorithm.

Following are the steps that describes the algorithm of Random Forest.

Step1: First select the random sample from the given dataset.

Step 2: Construct the forest by making multiple decision trees for the selected
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samples and then get the prediction from every Decision tree.

Step 3: For every predicted result voting will be performed.

Step 4: Finally select the majority voted result as your final prediction.

3.3.3 Evaluation

After Building a classifier on training dataset next phase is to evaluate the perfor-

mance of the classifier on testing dataset. To evaluate the proposed methodology,

this study use F-score measure because of highly imbalance dataset.

3.3.4 Macro F1-Score

For a balance between precision and recall Macro F1- score is used because it gives

equal importance to every label.

The Macro F1-score is defined as the mean of label-wise F1 scores. Greater value

of Macro F1-score indicates the good performance. [31]

MacroF1− score = 1/N
N∑
i=0

F1− scorei (3.8)



Chapter 4

Results and Experimentation

The proposed methodology in explained in detail in chapter 3. In this chapter

experiments and results are discussed. By applying the proposed methodology

these results are obtained.

4.1 Dataset

The evaluation of the proposed methodology is dependent on the dataset. As in

chapter 3, details about the dataset is already been mentioned. Dataset consisted

of 31,072 public confocal microscopic images of protein. Each image has four

channels that are used in protein subcellular localization.

With this dataset two main challenges arise. First is the highly imbalance dataset.

There are 28 different classes, Table 4.1 shows the number of instances of each

categories in this imbalance dataset. The most common label in dataset is nu-

cleoplasm with more than 12,000 images, after nucleoplasm cytosol has less than

9,000 images then plasma membrane has 3777 images, Nucleoli has 3621 images,

Mitochondria has 2965 and some rare labels in dataset are’Mitotic spindle’ with

210,’Lipid droplets’ with 172, ’Proxisomes’ with 53 , ’Endosomes’with 45 ‘Lyso-

somes’ with 28, ‘Microtubule ends’ with 21 and ‘rods and rings’ with just 11

images.

38
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Table 4.1: Number of instances of each category

Categories Number of instances

Nucleoplasm 12884

Cytosol 8228

Plasma membrane 3777

Nucleoli 3621

Mitochondria 2965

Golgi Apparatus 2822

Nuclear Bodies 2513

Nuclear speckles 1858

Nucleoli fibrillar center 1561

Centrosome 1482

Nuclear Membrane 1258

Intermediate Filaments 1093

Microtuble 1066

Endoplasmic Reticulum 1008

Microtubule organizing center 902

Cell junctions 802

Actin Filaments 688

Focal Adhesion site 537

Cytokinetic Bridge 529

Cytoplasmic bodies 328

Aggresome 322

Mitotic spindle 210

Lipid droplets 172

Proxisomes 53

Endosomes 45

Lysosomes 28

Microtuble ends 21

Rods and rings 11
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Figure 4.1: Number of Instances

The second challenge that comes with this dataset is the multi label classification 

in which some images contains more than one label. Figure 4.2 shows that 1st 

instance of the image belongs to two categories 16 and 0 which are “Nucleoplasm” 

and “Cytokinetic bridge” respectively. Similarly 2nd instance of the image belongs 

to 0, 1, 2 and 7 which are “Nucleoplasm”, ”Nuclear membrane”, ”Nucleoli” and
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Figure 4.2: Sample Dataset with multiple classes

Golgi apparatus respectively and instances 2, 3 and 4 belongs to only one category

which is “Nuclear bodies”, “Nucleoplasm” and “Microtubule organizing center”

respectively.

4.2 Feature Extraction

In order to predict Protein Subcellular Localization, segmentation plays a very

important role in microscopic images. In order to differentiate between background

and foreground images we used threshold value and using that threshold value we

binarize image. In proposed methodology instead of using fixed threshold we used

adaptive threshold.

4.2.1 Adaptive Threshold

To generate threshold value of each image according to the different intensities

in background and foreground we used Otsu’s adaptive threshold method. By
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applying adaptive threshold we are not losing any valuable information that we

might have lose using fixed threshold. Table 4.2 shows the fixed threshold values

and threshold values obtained by Otsu’s adaptive thresholding of five images with

different ranges of intensities in foreground and background. Figure 4.3 shows

clearly that using fixed threshold values most of the information is lost.

Table 4.2: Fixed v.s Adaptive Threshold Values

Image ID
Fixed Thresh-

old value

Adaptive

threshold

value

Image A

40 89

Image B

40 54

Image C

40 8

Image D

40 40
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Figure 4.3: Difference between binary image using fixed and adaptive thresh-
old values

Image obtained by fixed threshold value has a lot of noise because the intensities of 

foreground and background are not separable using 40 as fixed threshold value on 

the other hand threshold value obtained by Otsu’s adaptive thresholding technique 

is 51(table 4.2) and hence the segmentation of foreground and background image is 

much clear and visible in order to predict accurate protein subcellular localization.
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Figure 4.4: Difference between binary image using fixed and adaptive thresh-
old values

In an another example (figure 4.4) it is clearly visible that when the variant be-

tween classes variance between classes is low the fixed threshold technique fail to

separate image foreground to background resulting in loss of valuable information

whereas figure 4.4 shows that adaptive threshold technique is capable of differ-

entiating between foreground and background even in such low variance between

classes.
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Table 4.3: Similarity percentage of image with fixed threshold binary image
v/s adaptive threshold binary image

Image ID
Fixed Thresh-

old value

Adaptive

threshold

value

Image A

40.79% 73.86%

Image B

76.47% 78.51%

Image C

28.23% 47.77%

Image D

31.44% 47.7%
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Table 4.3 shows the similarity percentage of original images with the images ob-

tained by fixed threshold and images obtained by adaptive threshold. It is clearly

visible that images obtained by adaptive threshold is more similar to original im-

age then the using fixed threshold.

Table 4.4: Difference of original image with binary image using fixed threshold
and binary image using adaptive threshold.

ID Original Images

Difference of Bi-

nary Image us-

ing fixed thresh-

old with original

image

Difference of Bi-

nary Image using

Adaptive thresh-

old with original

image

Image

A

Image

B

Image

C

Image

D

Image

E



Results and Experimentation 47

Table 4.5: Standard Deviation of images using fixed and adaptive threshold
values

ID Original Images

Binary Image us-

ing fixed thresh-

old

Binary Image

using Adaptive

threshold

Image

A

59.73 123.49 74.83

Image

B

42.74 96.94 80.92

Image

C

4.79
15.84 52.80

Image

D

40.87 123.33 72.55

Image

E

12.57 37.97 37.89
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Table 4.6: PSNR of binary image using fixed threshold v/s binary image
using adaptive threshold

Image ID
Fixed Thresh-

old value

Adaptive

threshold

value

Image A

4.18 13.80

Image B

12.28 14.35

Image C

27.38 16.24

Image D

7.3 13.56

In table 4.4 visual difference of original images with the images obtained by fixed

and adaptive threshold has been shown.Images obtained from fixed threshold are

more visibly different then adaptive threshold.Table 4.5 shows the standard devi-

ation and table 4.6 shows the PSNR value to determine the signal to noise ratio.
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4.2.2 Image Binarization

Using the threshold value we generated 3 binary images for each image using the

equations mentioned in chapter 3. Below are the examples of 5 images which gives

the clear comparison between the binary images using fixed threshold and binary

images using adaptive threshold.

Figure 4.5: 3 Binary images of image A obtained by using equations with 
fixed threshold value 40.



Results and Experimentation 50

Figure 4.6: 3 Binary images of image A obtained by using equations with
adaptive threshold value 89.
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Figure 4.7: 3 Binary images of image B obtained by using equations with
fixed threshold value 40.
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Figure 4.8: 3 Binary images of image B obtained by using equations with
adaptive threshold value 54.
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Figure 4.9: 3 Binary images of image C obtained by using equations with
fixed threshold value 40.
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Figure 4.10: 3 Binary images of image C obtained by using equations with
adaptive threshold value 8.
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Figure 4.11: 3 Binary images of image D obtained by using equations with
fixed threshold value 40.
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Figure 4.12: 3 Binary images of image D obtained by using equations with
adaptive threshold value 51.
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Table 4.7: F-Score of different techniques

Sr. Techniques F-Score

1 Team1- D.Shubin 0.593

2 Team2-J.Lan 0.571

3 Team3- P.Jinmo 0.570

4 Team4- C.Enkal et al. 0.567

5 Fixed Threshold 0.44

6 Proposed Methodology 0.63

After generating binary images we extracted features using these binary images.

With the proposed methodology we extracted 7 features out of every binary image.

In this manner we get 9 x 3 = 27 feature vector for each image.

4.3 Classification

After building a dataset based on feature extraction of images and performing bal-

ancing through MLSMOTE to overcome the imbalance dataset, comes the train-

ing phase. In order to predict Protein Subcellular Localization, we used ensemble

classifier Random Forest for multilabel classification. We train the classifier on

training dataset. After training phase the classifier predicts test dataset.. To eval-

uate we measure the f-score because of the imbalance dataset and achieved 0.633

which outperformed the f-score of state-of-the-art model on this dataset which is

0.593(figure 4.13).

4.4 Comparison

To evaluate our performance of our classifier we calculated the F-socre on test 

data using the Otsu’s adaptive thresholding technique and compared it with f-score
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Figure 4.13: F-Score of different Techniques

using the fixed threshold. Along with this we also compared the performance of our

technique with the top 4 ranked teams. Team 1 technique was to use optimized

single neural network with the combination of loss function with a Lovasz loss

term. Team 2 focus was on data preprocessing, Team 3 used automatic data

augmentation and Teams 4 hybrid of different models. As shown in table 4.3 the

highest f-score was produced by our technique and it out performed all the other

techniques. With Otsu’s adaptive threshold technique we achieved f-score of 0.63

whereas f-score on fixed threshold is 0.44 which is less than f-score through Otsu’s

adaptive thresholding technique.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

With the advancement of microscopic images, significant work has been done to

predict protein subcellular localization. Up to 10,000 different kinds of proteins

are synthesize by Eukaryotic cells which are destined for different organelles. It is

crucial to understand protein subcellular localization for functional annotation of

protein [32]. To perform its function protein has to be located to its pre-determined

position hence it is very important to find the subcellular localization of protein.

Protein miss location has proven to be the cause of several human diseases, such

as Alzhrmeir’s disease and cancer [16]. Different researchers have produced dif-

ferent methods to predict protein subcellular localization. Significant work has

been done to predict Protein subcellular localization through amino acid sequenc-

ing. With the advancement in bio images, researchers are more focused on image

based Protein subcellular localization and has produced different methodologies

for this purpose. This research study also contribute towards the development of

methodologies for predicting protein subcellular localization.

To predict protein subcellular localization, this study has proposed a method-

ology that uses adaptive threshold value to segment protein image and produce 

state-of-the-art result on Human Protein Atlas Dataset (HPA-Version 18). The

59
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methodology that this study offers is based on the Global feature method which

is TAS to extract features from the image. Before Feature Extraction images

are binarized first using the Otsu’s adaptive thresholding technique which ensures

to segment image according to the intensity variance of each image individually.

By using adaptive threshold this study shows that it is better than using fixed

threshold because while using fixed threshold, it may lose some important infor-

mation or it may add noise to the segmented image. Adaptive threshold minimize

this problem by performing effective segmentation and separate foreground image

with background image efficiently. Hence this study use adaptive threshold value

to generate three binarize image using three different ranges. In the feature ex-

traction phase the, features are extracted from these binarize images using TAS

in which pixels with 0-8 white neighboring pixels are calculated in binary images

and by doing so it generates 3x9=27 feature vector of each original image. After

completing the feature extraction phase this study use Multi label random forest

classifier for training and then it evaluate this trained model on test dataset. Due

to the imbalance dataset the performance measure that we used is macro f1-score

and compare the results obtained from this proposed methodology with different

techniques. This study also compare the results obtained by using fixed threshold

on the same dataset. The macro f1-score obtained from the methodology proposed

in this research study is 0.63 which outperformed all the other techniques.
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Oksvold, Adil Mardinoglu, Åsa Sivertsson, Caroline Kampf, Evelina Sjöstedt,
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